The promise and perils of using artificial intelligence to fight corruption –

The promise and perils of using artificial intelligence to fight corruption –

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Nature Machine Intelligence (2022)
8 Altmetric
Metrics details
Corruption presents one of the biggest challenges of our time, and much hope is placed in artificial intelligence (AI) to combat it. Although the growing number of AI-based anti-corruption tools (AI-ACT) have been summarized, a critical examination of their promises and perils is lacking. Here we argue that the success of AI-ACT strongly depends on whether they are implemented top–down (by governments) or bottom–up (by citizens, non-governmental organizations or journalists). Top–down use of AI-ACT can consolidate power structures and thereby pose new corruption risks. Bottom–up use of AI-ACT has the potential to provide unprecedented means for the citizenry to keep their government and bureaucratic officials in check. We outline the societal and technical challenges that need to be overcome to harness the potential for AI to fight corruption.
This is a preview of subscription content

Subscribe to Journal
Get full journal access for 1 year
only £6.58 per issue
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
All prices are NET prices.
Rothstein, B. & Varraich, A. Making Sense of Corruption (Cambridge Univ. Press, 2017).
Köbis, N. C., van Prooijen, J.-W., Righetti, F. & Van Lange, P. A. M. The road to bribery and corruption: slippery slope or steep cliff? Psychol. Sci. 28, 297–306 (2017).
Article  Google Scholar 
Fisman, R. & Golden, M. A. Corruption: What Everyone Needs to Know (Oxford Univ. Press, 2017).
Rothstein, B. The Quality of Government: Corruption, Social Trust and Inequality in International Perspective (Univ. Chicago Press, 2011).
Mungiu-Pippidi, A. & Heywood, P. A Research Agenda for Studies of Corruption (Edward Elgar, 2020).
Mungiu-Pippidi, A. The time has come for evidence-based anticorruption. Nat. Hum. Behav. 1, 0011 (2017).
Article  Google Scholar 
Fisman, R. & Golden, M. How to fight corruption. Science 356, 803–804 (2017).
Article  Google Scholar 
High-Level Expert Group on Artificial Intelligence. A Definition of AI: Main Capabilities and Disciplines; (European Commission, 2019).
Petheram, A. & Asati, I. N. From Open Data to Artificial Intelligence: The Next Frontier in Anti-corruption; (Oxford Insights, 2018).
Aarvik, P. Artificial Intelligence a Promising Anticorruption Tool in Development Settings (Chr. Michelsen Institute, 2019).
World Bank. Artificial Intelligence in the Public Sector: Maximizing Opportunities, Managing Risks (World Bank, 2020).
Rahwan, I. et al. Machine behaviour. Nature 568, 477–486 (2019).
Article  Google Scholar 
Adam, I. & Fazekas, M. Are Emerging Technologies Helping Win the Fight Against Corruption in Developing Countries? Pathways for Prosperity Commission Background Paper Series No. 21 (Pathways for Prosperity Commission, 2018).
Lavigne, S., Clifton, B. & Tseng, F. Predicting financial crime: augmenting the predictive policing arsenal. Preprint at (2017).
López-Iturriaga, F. J. & Sanz, I. P. Predicting public corruption with neural networks: an analysis of Spanish provinces. Soc. Indic. Res. 140, 975–998 (2018).
Article  Google Scholar 
De Blasio, G. et al. Predicting corruption crimes with machine learning. A study for the Italian municipalities. Preprint at (2020).
Obermaier, F. & Obermayer, B. The Panama Papers: Breaking the Story of How the Rich and Powerful Hide Their Money (Simon & Schuster, 2017).
King, T. C., Aggarwal, N., Taddeo, M. & Floridi, L. Artificial Intelligence crime: an interdisciplinary analysis of foreseeable threats and solutions. Sci. Eng. Ethics 26, 89–120 (2020).
Article  Google Scholar 
Wrede, A. Facing Future Corruption Challenges—Trends of the Next Decade; (Transparency International 2019).
Kossow, N. in A Research Agenda for Studies of Corruption (eds Mungiu-Pippidi, A. & Heywood, P.) 146–157 (Edward Elgar, 2020).
Anti-Corruption Technology Solutions—About; (Microsoft).
Leon, S. How Can We Use Artificial Intelligence to Help Us Fight Corruption in the Mining Sector?; (Global Witness, 2018).
Leib, M., Köbis, N. C., Soraperra, I., Weisel, O. & Shalvi, S. Collaborative dishonesty: a meta-study. Psychol. Bull. 147, 1241–1268 (2021).
Article  Google Scholar 
Köbis, N. C., Verschuere, B., Bereby-Meyer, Y., Rand, D. & Shalvi, S. Intuitive honesty versus dishonesty: meta-analytic evidence. Perspect. Psychol. Sci. 14, 778–796 (2019).
Article  Google Scholar 
Giubilini, A. & Savulescu, J. The artificial moral advisor. The ‘ideal observer’ meets. Artif. Intell. Philos. Technol. 31, 169–188 (2018).
Google Scholar 
Kahneman, D., Sibony, O. & Sunstein, C. R. Noise: A Flaw in Human Judgment (Hachette, 2021).
Stephenson, M. Corruption as a self-reinforcing trap: implications for reform strategy. World Bank Res. Obs. 35, 192–226 (2020).
Article  Google Scholar 
Rahwan, I. Society-in-the-loop: programming the algorithmic social contract. Ethics Inf. Technol. 20, 5–14 (2018).
Article  Google Scholar 
Kerr, A., Barry, M. & Kelleher, J. D. Expectations of artificial intelligence and the performativity of ethics: implications for communication governance. Big Data Soc. 7, 2053951720915939 (2020).
Article  Google Scholar 
Schwickerath, A. K., Varraich, A. & Lee Smith, L. (eds) How to research corruption. In Conference Proceedings Interdisciplinary Corruption Research Forum June 7–8 (Interdisciplinary Corruption Research Network, 2016).
Marzagão, T. Using AI to Fight Corruption in the Brazilian Government; (Observatory of Public Spending, 2017).
Starke, C., Naab, T. K. & Scherer, H. Free to expose corruption: the impact of media freedom, Internet access and governmental online service delivery on corruption. Int. J. Commun. Syst. 10, 21 (2016).
Google Scholar 
Harrison, G., Hanson, J., Jacinto, C., Ramirez, J. & Ur, B. An empirical study on the perceived fairness of realistic, imperfect machine learning models. In Proc. 2020 Conference on Fairness, Accountability and Transparency 392–402 (Association for Computing Machinery, 2020).
Kearns, M. & Roth, A. The Ethical Algorithm: The Science of Socially Aware Algorithm Design (Oxford Univ. Press, 2019).
Rauh, C. Validating a sentiment dictionary for German political language—a workbench note. J. Inf. Technol. Politics 15, 319–343 (2018).
Article  Google Scholar 
Jobin, A., Ienca, M. & Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 1, 389–399 (2019).
Article  Google Scholar 
Taddeo, M. & Floridi, L. How AI can be a force for good. Science 361, 751–752 (2018).
MathSciNet  MATH  Article  Google Scholar 
Starke, C. & Luenich, M. Artificial Intelligence for EU decision-making. Effects on citizens perceptions of input, throughput and output legitimacy. Data Policy 2, E16 (2020).
Article  Google Scholar 
Köbis, N. C., Bonnefon, J.-F. & Rahwan, I. Bad machines corrupt good morals. Nat. Hum. Behav. 5, 679–685 (2021).
Article  Google Scholar 
Acemoglu, D. Harms of AI. Working Paper 29247; (NBER, 2021).
Pinker, S., Nowak, M. A. & Lee, J. J. The logic of indirect speech. Proc. Natl Acad. Sci. USA 105, 833–838 (2008).
Article  Google Scholar 
Russell, B. Power: A New Social Analysis (George Allen & Unwin, 1938).
Kalluri, P. Don’t ask if artificial intelligence is good or fair, ask how it shifts power. Nature 583, 169 (2020).
Article  Google Scholar 
Crawford, K. Atlas of AI (Yale Univ. Press, 2021).
Zuboff, S. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power (Profile Books, 2019).
Shortening the Risk Lifecycle (Microsoft);
Chen, S. Is China’s corruption-busting AI system ‘Zero Trust’ being turned off for being too efficient? South China Morning Post; (4 February 2019).
Kipnis, D. The Powerholders Vol. 230 (Univ. Chicago Press, 1976).
Bendahan, S., Zehnder, C., Pralong, F. P. & Antonakis, J. Leader corruption depends on power and testosterone. Leadersh. Q. 26, 101–122 (2015).
Article  Google Scholar 
Keltner, D., Gruenfeld, D. H. & Anderson, C. Power, approach and inhibition. Psychol. Rev. 110, 265–284 (2003).
Article  Google Scholar 
Bowman, J. S. & West, J. P. Lord Acton and employment doctrines: absolute power and the spread of at-will employment. J. Bus. Ethics 74, 119–130 (2007).
Article  Google Scholar 
Laskowski, P., Johnson, B., Maillart, T. & Chuang, J. Government surveillance and incentives to abuse power. Preprint at (2014).
Jenkins, M. Algorithms in Public Administration: How Do We Ensure They Serve the Common Good, Not Abuses of Power?—Blog (Transparency International, 2021);
Mattoni, A. In Sociology and Digital Media (eds Rohlinger, D. A. & Sobieraj, S.) (Oxford Univ. Press, 2021).
Mattoni, A. The grounded theory method to study data-enabled activism against corruption: between global communicative infrastructures and local activists’ experiences of big data. Eur. J. Disord. Commun. 35, 265–277 (2020).
Article  Google Scholar 
Camaj, L. The media’s role in fighting corruption: media effects on governmental accountability. Int. J. Press Polit. 18, 21–42 (2013).
Article  Google Scholar 
Köbis, N. C., Iragorri-Carter, D. & Starke, C. in Corruption and Norms (eds Kubbe, I. & Engelbert, A.) 31–52 (Springer, 2018).
Acemoglu, D. & Robinson, J. A. De facto political power and institutional persistence. Am. Econ. Rev. 96, 325–330 (2006).
Article  Google Scholar 
Persson, A., Rothstein, B. & Teorell, J. Why anticorruption reforms fail-systemic corruption as a collective action problem. Governance 26, 449–471 (2013).
Article  Google Scholar 
Ryman-Tubb, N. F., Krause, P. & Garn, W. How artificial intelligence and machine learning research impacts payment card fraud detection: a survey and industry benchmark. Eng. Appl. Artif. Intell. 76, 130–157 (2018).
Article  Google Scholar 
Crawford, K. et al. AI Now 2019 Report (AI Now Institute, 2019).
Crawford, K. Regulate facial-recognition technology. Nature 572, 565–565 (2019).
Article  Google Scholar 
Oksha, N. Empowering Citizens as Watchdogs in Ukraine; (Open Government Partnership, 2019).
Odilla, F. Bots against corruption: exploring benefits and limitations of AI-based anti-corruption technology. In Proc. International Seminar Artificial Intelligence: Democracy and Social Impacts (USP, 2021).
Attard, J., Orlandi, F., Scerri, S. & Auer, S. A systematic review of open government data initiatives. Gov. Inf. Q. 32, 399–418 (2015).
Article  Google Scholar 
Mayernik, M. S. Open data: accountability and transparency. Big Data Soc. 4, 2053951717718853 (2017).
Article  Google Scholar 
Flyverbom, M. & Murray, J. Datastructuring—organizing and curating digital traces into action. Big Data Soc. 5, 2053951718799114 (2018).
Article  Google Scholar 
Rafaeli, A., Ashtar, S. & Altman, D. Digital traces: new data, resources and tools for psychological-science research. Curr. Dir. Psychol. Sci. 28, 560–566 (2019).
Article  Google Scholar 
Boeschoten, L., Ausloos, J., Möller, J. E., Araujo, T. & Oberski, D. L. A framework for digital trace data collection through data donation. Preprint at
Karakaya, A.-S., Hasenburg, J. & Bermbach, D. SimRa: using crowdsourcing to identify near miss hotspots in bicycle traffic. Pervasive Mob. Comput. 67, 101197 (2020).
Article  Google Scholar 
Vincent, J. ‘Hey Siri, I’m getting pulled over’ Shortcut Makes it Easy to Record Police; (The Verge, 2020).
della Porta, D. & Mattoni, A. Spreading Protest: Social Movements in Times of Crisis (ECPR Press, 2014).
Schroth, P. W. & Sharma, P. Transnational law and technology as potential forces against corruption in Africa. Manag. Decis. 41, 296–303 (2003).
Article  Google Scholar 
Murillo, M. J. Evaluating the role of online data availability: the case of economic and institutional transparency in sixteen Latin American nations. Int. Polit. Sci. Rev. 36, 42–59 (2015).
Article  Google Scholar 
Ananny, M. & Crawford, K. Seeing without knowing: limitations of the transparency ideal and its application to algorithmic accountability. New Media Soc. 20, 973–989 (2018).
Article  Google Scholar 
Jasanoff, S. Virtual, visible and actionable: data assemblages and the sightlines of justice. Big Data Soc. 4, 2053951717724477 (2017).
Article  Google Scholar 
Seligsohn, D., Liu, M. & Zhang, B. The sound of one hand clapping: transparency without accountability. Env. Polit. 27, 804–829 (2018).
Article  Google Scholar 
Mittal, M., Wu, W., Rubin, S., Madden, S. & Hartmann, B. Bribecaster: documenting bribes through community participation. In Proc. ACM 2012 Conference on Computer Supported Cooperative Work Companion 171–174 (Association for Computing Machinery, 2012).
Using an App to Curb Corruption; (giz. Nigeria, 2016).
How Barbie, Comedians and New Tech are Opening up Mexico’s Government; (Apolitical, 2016).
Seering, J., Luria, M., Kaufman, G. & Hammer, J. Beyond dyadic interactions: considering chatbots as community members. In Proc. 2019 CHI Conference on Human Factors in Computing Systems 1–13 (Association for Computing Machinery, 2019).
Grau, P., Naderi, B. & Kim, J. Personalized motivation-supportive messages for increasing participation in crowd-civic systems. In Proc. ACM on Human-Computer Interaction Vol. 2, 1–22 (Association for Computing Machinery, 2018).
Li, J., Chen, W.-H., Xu, Q., Shah, N. & Mackey, T. Leveraging big data to identify corruption as an SDG goal 16 humanitarian technology. In Proc. 2019 IEEE Global Humanitarian Technology Conference (GHTC) 1–4 (IEEE, 2019).
Savage, S., Monroy-Hernandez, A. & Höllerer, T. Botivist: calling volunteers to action using online bots. In Proc. 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing 813–822 (Association for Computing Machinery, 2016).
Cerulus, L. Wikileaks Violated Privacy Rights of Hundreds of People: AP; (Politico, 2016).
Giles, M. The Cambridge Analytica Affair Reveals Facebook’s ‘Transparency Paradox’ (MIT Technology Review, 2018).
Kossow, N. & Miszta, E. Beyond the Hype: Distributed Ledger Technology in the Field of Public Administration. Working Paper No. 58; (ERCAS, 2019).
Aggarwal, N. & Floridi, L. The opportunities and challenges of blockchain in the fight against government corruption. In 19th General Activity Report (2018) of the Council of Europe Group of States Against Corruption (GRECO) (2018).
Bosri, R., Rahman, M. S., Bhuiyan, M. Z. A. & Al Omar, A. Integrating blockchain with artificial intelligence for privacy-preserving recommender systems. IEEE Trans. Netw. Sci. Eng. 8, 1009–1018 (2021).
MathSciNet  Article  Google Scholar 
AlShamsi, M., Salloum, S. A., Alshurideh, M. & Abdallah, S. in Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications (eds Hassanien, A. E., Bhatnagar, R. & Darwish, A.) 219–230 (Springer, 2021).
Hyvärinen, H., Risius, M. & Friis, G. A blockchain-based approach towards overcoming financial fraud in public sector services. Bus. Inf. Syst. Eng. 59, 441–456 (2017).
Article  Google Scholar 
Batubara, F. R., Ubacht, J. & Janssen, M. Challenges of blockchain technology adoption for e-government: a systematic literature review. In Proc. 19th Annual International Conference on Digital Government Research: Governance in the Data Age 1–9 (Association for Computing Machinery, 2018).
Casino, F., Dasaklis, T. K. & Patsakis, C. A systematic literature review of blockchain-based applications: current status, classification and open issues. Telemat. Inform. 36, 55–81 (2019).
Article  Google Scholar 
Aarvik, P. Blockchain as an Anti-Corruption Tool; (U4, 2020).
Shang, Q. & Price, A. A blockchain-based land titling project in the republic of Georgia: rebuilding public trust and lessons for future pilot projects. Innov. Technol. Gov. Glob. 12, 72–78 (2019).
Google Scholar 
Abadi, J. & Brunnermeier, M. Blockchain Economics. Working Paper 25407; (NBER, 2018).
David-Barrett, L. State Capture and Inequality; (NYU Center on International Cooperation, 2021).
AI Procurement in a Box; (World Economic Forum, 2020).
Calvaresi, D., Mualla, Y., Najjar, A., Galland, S. & Schumacher, M. in Explainable, Transparent Autonomous Agents and Multi-Agent Systems 41–58 (Springer, 2019).
Tufekci, Z. & Wilson, C. Social media and the decision to participate in political protest: observations from Tahrir Square. J. Commun. 62, 363–379 (2012).
Article  Google Scholar 
Lange, D. A. Multidimensional conceptualization of organizational corruption control. AMRO 33, 710–729 (2008).
Article  Google Scholar 
Heidenheimer, A. J. & Johnston, M. Political Corruption: Concepts and Contexts (Transaction Publishers, 2011).
Heywood, P. Rethinking corruption: hocus-pocus, locus and focus. Slav. East Eur. Rev. 95, 21–48 (2017).
Article  Google Scholar 
Download references
Center for Humans and Machines, Max Planck Institute for Human Development, Berlin, Germany
Nils Köbis & Iyad Rahwan
Human(e) AI, Amsterdam School of Communication Research, University of Amsterdam, Amsterdam, The Netherlands
Christopher Starke
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
N.K. provide conceptualization and visualization, wrote the original draft and reviewed and edited the manuscript. C.S. provided conceptualization, wrote the original draft and reviewed and edited the manuscript. I.R. reviewed and edited the manuscript and provided supervision and visualization.
Correspondence to Nils Köbis.
The authors declare no competing interests.
Nature Machine Intelligence thanks Alice Mattoni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Reprints and Permissions
Köbis, N., Starke, C. & Rahwan, I. The promise and perils of using artificial intelligence to fight corruption. Nat Mach Intell (2022).
Download citation
Received: 21 October 2021
Accepted: 13 April 2022
Published: 23 May 2022
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Advanced search
Nature Machine Intelligence (Nat Mach Intell) ISSN 2522-5839 (online)
© 2022 Springer Nature Limited
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.


How do I find SEO services
Dominate search engine result pages, crush your competition, get more sales, and be the #1 provider in your service area. Work with Top SEO Agency in Dublin that also provides quality Digital Marketing Optimisation services. 

Our Search Sngine Optimisation Consultants will improve your site performance in all major search engines by implementing the Best SEO Solutions, Strategies and Techniques. Let us help you increase organic traffic, get more leads, more customers, and grow your revenue with a customised affordable SEO package.

Contact Us

Globe Boss Digital Marketing Agency

Hampton Square
Dublin - Ireland
Tel: (+353)1 868 2345